strana 1

Technologie a procesy sušení dřeva

5. Deformačně-napěťové pole ve dřevě během sušení

Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu reg. č. CZ.1.07/2.2.00/28.0021 za přispění finančních prostředků EU a státního rozpočtu České republiky

V této prezentaci jsou ke stávajícím teplotně-vlhkostním rovnicím přidány rovnice popisující deformace a napětí ve dřevě, které vznikají při změnách vlhkosti a teploty.

Mendelova univerzita v Brně

Vlhkostní pole ve dřevě v čase 54.5 hodin od začátku sušení

Vliv gradientu teploty na deformace dřeva je většinou zanedbatelný. Simulace může být provedena například

zanedbatelný. Simulace může být provedena například v programu Comsol Multiphysics s podporou programu MATLAB. Pro popis deformací a napětí je třeba definovat složky posunutí ve směru os *x*, *y*, *z* vektorem (*u*, *v*, *w*). Deformace jsou potom popsány symetrickým tensorem obsahující tři normálové složky (ε_x , ε_y , ε_z) a v případě symetrie tři smykové složky (ε_{xy} , ε_{yz} , ε_{xz}).

Napětí jsou analogicky k deformacím popsány symetrickým tensorem o třech normálových (σ_x , σ_y , σ_z) a třech smykových složkách (σ_{xy} , σ_{yz} , σ_{xz}).

Zaveďme následující značení:

kde $\boldsymbol{\varepsilon}_{M}$ je vektor vlhkostních deformací, $\boldsymbol{\varepsilon}_{T}$ je vektor teplotních deformací, CME_{T} , CME_{R} , CME_{L} jsou koeficienty vlhkostní deformace a CTE_{T} , CTE_{R} , CTE_{L} jsou koeficienty teplotní deformace.

Potom podle Hookova zákona platí následující vztah: $\sigma = C(\epsilon - \epsilon_{M} - \epsilon_{T})$

$$\mathbf{C} = \begin{pmatrix} C_{ij} \\ i, j=1,..,6 \end{pmatrix} = \begin{pmatrix} \frac{E_x(1-\mu_{yz}\mu_{zy})}{\Delta} & \frac{E_x(\mu_{yx}+\mu_{zx}\mu_{yz})}{\Delta} & \frac{E_x(\mu_{zx}+\mu_{yx}\mu_{zy})}{\Delta} & 0 & 0 & 0 \\ \frac{E_y(\mu_{xy}+\mu_{xz}\mu_{zy})}{\Delta} & \frac{E_y(1-\mu_{zx}\mu_{xz})}{\Delta} & \frac{E_y(\mu_{zy}+\mu_{zx}\mu_{xy})}{\Delta} & 0 & 0 & 0 \\ \frac{E_z(\mu_{xz}+\mu_{xy}\mu_{yz})}{\Delta} & \frac{E_z(\mu_{yz}+\mu_{xz}\mu_{yx})}{\Delta} & \frac{E_z(1-\mu_{xy}\mu_{yx})}{\Delta} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2G_{xy} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2G_{yz} & 0 \\ 0 & 0 & 0 & 0 & 0 & 2G_{yz} & 0 \\ \end{pmatrix}$$

 $\Delta = 1 - \mu_{xy}\mu_{yx} - \mu_{yz}\mu_{zy} - \mu_{zx}\mu_{xz} - 2\mu_{xy}\mu_{yz}\mu_{zx}$

je Hookova matice s mechanickými vlastnostmi material jako jsou moduly pružnosti E_x , E_y , E_z a Poissonovy čísla μ_{kl} , kde indexy k, l=x, y, z.

Výsledná soustava tří parciálních diferenciálních rovnic pro neznámé tři složky posunutí (*u*, *v*, *w*) vypadá následovně:

$$\rho \frac{\partial^2 u}{\partial t^2} - \frac{\partial \sigma_x}{\partial x} - \frac{\partial \tau_{xy}}{\partial y} - \frac{\partial \tau_{xz}}{\partial z} = F_x$$

$$\rho \frac{\partial^2 v}{\partial t^2} - \frac{\partial \tau_{xy}}{\partial x} - \frac{\partial \sigma_y}{\partial y} - \frac{\partial \tau_{yz}}{\partial z} = F_y$$

$$\rho \frac{\partial^2 w}{\partial t^2} - \frac{\partial \tau_{xz}}{\partial x} - \frac{\partial \tau_{yz}}{\partial y} - \frac{\partial \sigma_z}{\partial z} = F_z$$

kde $\mathbf{F} = (F_x, F_y, F_z)$ značí vnější silové působení na těleso.

Mendelova univerzita v Brně

Deformovaný tvar a vlhkostní pole v průřezu uprostřed délky řeziva ve vybraných časech

Tento obrázek ilustruje vliv Soretova efektu na distribuci vlhkosti uvnitř řeziva. Můžete vidět, že na začátku sušení je vliv Soretova efektu největší a po 10 hodinách (kdy je řezivo již prohřáté – teplota je rovnoměrně rozložena – gradient teploty se nuluje) vymizí. Na začátku sušení tento efekt způsobí zvýšení vlhkosti pod povrchovými vrstvami nad počáteční vlhkost.

Simulované vlhkostní profily uprostřed tloušťky řeziva (y=0.0225 m) a podél šířky řeziva (podél osy x) v průřezu a) na čele (z=0) a b) uprostřed délky řeziva (z=1)

Napětí ve dřevě během jeho sušení

- vlhkostní (nebo teplotní) napětí (dočasné, mizí po vyrovnání vlhkosti nebo teploty)
- zbytková (trvalé, nezmizí po vyrovnání vlhkosti nebo teploty)

Obojí je vyvoláno gradientem vlhkosti (nebo teploty), ale zbytkové napětí ve dřevě zůstane i po vynulování gradientu vlhkosti (nebo teploty) a uvolní se až po rozřezání řeziva (tedy narušení struktury dřeva). Zbytkové napětí je pravděpodobně důsledkem změny vnitřní struktury dřeva a otázkou je, zda vzniká už při elastickém (přužném) namáhání nebo až při plastickém namáhání???

Ilustrace vlhkostního gradientu uvnitř řeziva při teplovzdušném sušení

llustrace deformací po tloušťce řeziva při teplovzdušném sušení

strana 10

Simulované deformace řeziva při teplovzdušném sušení v závislosti na odklonu anatomických směrů od geometrických os modelu

Napětí v řezivu na začátku teplovzdušného sušení

Napětí v řezivu na konci teplovzdušného sušení

Temp.	20 °C		40 °C		60 °C		80 °C	
M.C.	Е	σ_{max}	Е	σ_{max}	Е	$\sigma_{\rm max}$	Е	$\sigma_{\rm max}$
4 %	561	3,4	455	2,9	431	3,2	380	3,5
8 %	517	3,4	400	3,2	343	3,3	289	3,3
12 %	466	3,3	330	3,3	277	3,0	226	2,7
16 %	416	3,1	267	2,9	214	2,5	152	2,1
20 %	344	2,8	214	2,4	167	2,1	96	1,6
Green	214	1,9	158	1,9	106	1,5	50	1,1

M.C.: Moisture content in wood

Temp.: Temperature in wood

E: Modulus of elasticity, MPa

Grafické znázornění tabulky

σ_{max}: Tension strength, Mpa

Hodnoty meze pevnosti a modulu pružnosti pro tah v tangenciálním směru u borovice

Mendelova univerzita v Brně

strana 14

Temp.	20 °C		40 °C		60 °C		80 °C	
M.C.	Е	$\sigma_{\rm pl}$						
4 %	417	3,5	333	3,2	323	3,2	368	3,2
8 %	395	3,2	304	3,0	261	2,6	248	2,2
12 %	328	2,9	247	2,5	208	1,9	126	1,4
16 %	259	2,4	198	2,0	142	1,4	106	1,1
20 %	221	2,0	172	1,5	115	1,1	77	0,9
Green	132	1,2	129	1,1	87	0,9	50	0,6

M.C.: Moisture content in wood

Temp.: Temperature in wood

E: Modulus of elasticity, MPa

σpl: Compression strength at the proportionality limit, MPa

Hodnoty meze pevnosti a modulu pružnosti pro tlak v tangenciálním směru u borovice

Mendelova univerzita v Brně

Grafické znázornění tabulky

strana 15

