

NUMERICKÁ OPTIMALIZACE DŘEVAŘSKÉHO VÝROBKU

Jan Tippner, LDF MENDELU

wood scanned at 500nm, source: www.ximea.com

FEA of wood microstructure.

Javořík 2002, MENDELU

using of CLT, source: blog.loadingdock5.com

FEA of piano soundboard swelling, Tippner 2011, MENDELU

using of OSB, Jim DeStefano, P.E., www.structuremag.org

Aplikace FEM ve Wood Science and Technology

To know behavior = to describe = to model

Fields of wood physics: laws (phys. models)

- **wood & heat transfer:** Fourier's laws, Newton's law of cooling, Navier-Stokes law (fluid dynamics), Stefan-Boltzman's law

- wood & water transfer: Fick's laws, Darcy's laws
- wood & mechanics: Hooke's law, general equation of motion (static/dynamics)
- acoustics: general equation of motion, wave equation

- usually described by differential equations partial differential equations (PDE)
- PDE **straightly solvable in basic problems**, hardly solvable with complicated geometry, anisotropy, in-elasticity, multi-physics etc.
- robust solution with using of **numerical methods** e.g. finite element method (FEM)

CAE: CAD, CAM,... CAA (FEA, CFD)

Vibration response factors of bridge deck, source: http://www.masterseries.com

Quadcopter CFD Simulation, source:http://www.symscape.com

Automotive FEA, source: https://www.tentechllc.com

Operational Shock Modelling of HDD, source: https://www.a-star.edu.sg

FEA of Mandible after Removing a 3. Molar, source: http://www.jcda.ca/article/a72

Pressure plots & streamlines - bicycle in wind tunnel, source: http://www.digitaleng.news

Examples of FEA in Wood Science & Technology

Laboratory of Numerical Simulations in Brno, CZ

- Static structural analyzes material WBC, constructions
- Dynamics and acoustics of wood and wood products
- Computational fluid dynamics (CFD)
- Wood macro- & micro- structure modeling
- Thermal analyzes cooling, heating, heat transfer
- Coupled field analyzes Strain x Moisture, Strain x Thermal
- Electro-magnetic field transfer through the wood and wood products
- Optimization design & topological
- Propabilistic analyzes (ANSYS PDS)

FEA of piano soundboard swelling, Tippner 2011, MENDELU

Bamboo test, Sebera 2010, MENDELU

CFD of drying kiln, Zejda & Tippner 2003, MENDELU

 Equipment: FEM SW – ANSYS package (research licences & teaching licences for ANSYS APDL, Workbench, Autodyn, CFX etc.), Comsol Multiphysics, FlexPDE, ELMER, HPC computacional linux servers, Win and Linux workstations

Stress-wave propagation, Sebera et al. 2011, MENDELU

FEA of CLT, Sebera et al. 2012, MENDELU

FEA in Wood Science – Material models

Determination of elasto-plastic material characteristics

- Norway spruce and European beech - Milch et al. 2016, Holzforschung 70(11) - English oak, WBC (MDF, ...)

Expermental > Bi-linear model for uni-axial loading > verification in bending 6/38

Application of Elasto-Plastic Model in FEA of Joints

Optimization of All-wooden Joints, structure analysis

Tippner J. et al., 2014, Intern. Conference on Structural Analysis of Historical Constructions

FINITE-ELEMENT ANALYSIS OF A HISTORICAL TRUSS RECONSTRUCTED WITH A TRADITIONAL ALL-WOODEN JOINTS

-,001437 -,001343 -,00136 -,8548-43 -,4638-40 -,4698-43 -,2768-40 -,8048-44 -1158-60 -,3

19-0274 01-010 01-010 01-010 01-010 01-010 01-010 01-010 01-010 01-010 01-010 01-010 01-010 01-010 01-010 01-01

0407 -.001340 -.0009 -.0040-00 -.4600-00 -.4600-00 -.0040-00 -.0040-04 -.0110-00 -.0040-

Fracture characterization of adhesively bonded joints

- cohesive zone (LEFM), technology via FEM gradually degrading material elasticity between bonded surfaces
- interface's material behavior characterized stress (σ , τ) and separation distances
- bonded contact linear traction separation material law
- mode II: 3-End Notched Flexure test of bonded joints (via equivalent crack length procedure)

3-ENF test with DIC

DIC analysis for MM

FE Model with predefined crack-path (Conact-pair based)

Modeling of Wood Desintegration (HARDIS 2017-2020)

1. Orthotropic elasticity

$[D]^{-1} = \begin{bmatrix} \frac{1}{E_x} & \frac{-\mu_{xy}}{E_x} & \frac{\mu_{xz}}{E_y} & 0 & 0 & 0 \\ \frac{-\mu_{yx}}{E_y} & \frac{1}{E_y} & \frac{-\mu_{yz}}{E_y} & 0 & 0 & 0 \\ \frac{-\mu_{xx}}{E_z} & \frac{-\mu_{yy}}{E_z} & \frac{1}{E_z} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_{xy}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{xy}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{xy}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{xy}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix}$

2. Orthotropic plasticity (Hill yield function) $f(\mathbf{\sigma}, \overline{\varepsilon}^{p}) = \left| F(\sigma_{RR} - \sigma_{TT})^{2} + G(\sigma_{TT} - \sigma_{IL})^{2} + H(\sigma_{IL} - \sigma_{RR})^{2} + 2L\sigma_{RT}^{2} + 2M\sigma_{TT}^{2} + 2N\sigma_{IR}^{2} \right|^{\frac{1}{2}} - \sigma_{IL}(\overline{\varepsilon}^{p})$

4. Example of material parameters:

 $D_{IIII} = 17850 \text{ MPa}; D_{RRR} = 472 \text{ MPa}; D_{TTT} = 388 \text{ MPa}; D_{IIRR} = 14 \text{ MPa}; D_{IIIT} = 10 \text{ MPa}; D_{RRT} = 216 \text{ MPa}; D_{IRR} = 573 \text{ MPa}; D_{IIIT} = 474 \text{ MPa}; D_{IIIT} = 53 \text{ MPa}; D_{IIIT} = 53 \text{ MPa}; D_{IIII} = 573 \text{ MPa}; D_{IIII} = 474 \text{ MPa}; D_{IIII} = 53 \text{ MPa}; D_{IIIII} = 53 \text{ MPa}; D_{IIII} = 53 \text{ MPa}; D_{IIIII} = 53 \text{ MPa}; D_{IIII} = 5$ $\sigma_v^0 = 49 \text{ MPa}; E_P = 20 \text{ MPa}$ F =52.62; G =-4.99; H =5.99; L =26.74; M =124.92; N =26.74

 $\sigma_{II}^{f} = 53 \text{ MPa}; \sigma_{RR}^{f} = 10.4 \text{ MPa}; \sigma_{TT}^{f} = 11.1 \text{ MPa}; \sigma_{IR}^{f} = 10.7 \text{ MPa}; \sigma_{RT}^{f} = 10.7 \text{ MPa}; \sigma_{TT}^{f} = 7.1 \text{ MPa};$

Modeling of Wood Desintegration (HARDIS 2017-2020)

Static and Dynamics of Guitar

Carbon fiber reinforcement of guitar (topological optimization > structural analysis)

Location of ribs (wooden or carbon fiber rods) based on modal analysis

Physical background of Dynamic FEAs

Types of dynamic analyzes = forms of eq. of motion:

1. undamped modal analysis [K].*u* + [M].*u*" = 0

computation of natural frequencies and mode shapes

- 2. damped modal analysis [K].u + [M].u'' + [C].u' = 0
- 3. harmonic analysis [K].u + [M].u'' + [C].u' = f(f)

right side: all forces harmonically changed, true amplitudes in the case of periodical vibrations

4. "full" transient analysis [K].u + [M].u" + [C].u' = f

loads are generally described in time – allows nonlinearities

1. Pre-processing > 2. Solution > 3. Post-processing

1. Geometric model (building or CAD import)

2. Discretization of region (replacement of infinitesimal volume by finite count of elements with finite dimensions, connected via nodes) and declaring physics (field, material, IC, BC)

3. Now we have for each discrete **point: 3 equations** – field of displacements in all directions (x,y,z) and we are looking for **solution of field of strains** (6 equations) and field of **stresses** (next 6 eq.)

4. Replacement of displacement functions by polynomials and new deriving of displacement functions

5. Implementation of boundary conditions (displacements, forces)

6. Computation of system of algebraic equations - displacements

7. Computation of strains and stresses

8. Reviewing numerical outputs, graphical illustration of results

FEA in Wood Science & Technology – Grand Piano

The numerical simulation of behaviour of the **piano soundboard, ribs, bridges and wooden frame** (FEM) in ANSYS.

Topological optimization of static loading

Comparison of several types of the frame

FE model of planks - soundboard, ribs, bridges, frame

Modal analysis of soundboard (freqs & mode shapes).

Static loading of frame

Validation of Material Model for Thermal Analysis

Troppová & Tippner (2015): The influence of specific parameters on thermal properties of MDF by pulse transient method.

Application: thermal bridges in wooden house

Troppová, Klepárník, Tippner (2015): Thermal bridges in a prefabricated wooden house: experimental and numerical characterization.

2 methods: infrared thermography was used to monitor thermal bridges, numerical simulations of parts were created using ANSYS.

significant influence of thermal bridges in wooden constructions, the calculated ψ values of the structural connections differ from the standard value in EN ISO 14683 17

CLT – structure, defects, temperature, MC

stationary measurement by "lambdameter" under different temperatures & MC
 steady state numerical simulations using ANSYS (lamela orientation, cracks)

Numerical simulations of heat and mass transfer in wood

Background of Thermal-Stress-Strain FEA

Strains { ε } should be divided to **thermal** strains { ε_t }, initial strains { ε_0 } and **elastic** strains { ε_{el} }:

 $\{\boldsymbol{\varepsilon}\} = \{\boldsymbol{\varepsilon}_{el}\} + \{\boldsymbol{\varepsilon}_{t}\} + \{\boldsymbol{\varepsilon}_{0}\}$

Stress-Strain relationship for linear elasticity (incl. initial **internal stresses and thermal stresses**):

$$\{\sigma\} = [D]\{\varepsilon_{el}\} + \{\sigma_0\} = [D](\{\varepsilon\} - \{\varepsilon_l\} - \{\varepsilon_o\})$$

Matrix of elasticity [D], resp. **compliance matrix** [D]⁻¹ are differently defined for isotropic, orthotropic and anisotropic materials. For **isotropic materials** is [D]⁻¹ defined:

$$[D]^{-1} = \frac{1}{E} \begin{vmatrix} 1 & -\mu & -\mu & 0 & 0 & 0 \\ -\mu & 1 & -\mu & 0 & 0 & 0 \\ -\mu & -\mu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\mu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\mu) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\mu) \end{vmatrix}$$

Physical background of Thermal-Stress-Strain FEA

Next for **orthotropic** material is $[D]^{-1}$:

where *E* is Young modulus of elasticity and μ is Poisson's ratio.

Thermal strains are defined with temperature, reference tempereture and **coefficient of thermoexpansion** (analog. hygroexpansion):

$$\varepsilon_t = \alpha_T (T - T_{ref})$$
$$\varepsilon_w = \beta_H \Delta w$$

Coupling of the thermal (moisture) field and stress field regards to Hooke's law with decomposition of deformations and 2nd law of thermodynamics is able to define by **2 constitutive thermo-elastic equations**:

$$[D]^{-1} = \begin{vmatrix} \frac{1}{E_x} & \frac{-\mu_{xy}}{E_x} & \frac{\mu_{xz}}{E_x} & 0 & 0 & 0 \\ \frac{-\mu_{yx}}{E_y} & \frac{1}{E_y} & \frac{-\mu_{yz}}{E_y} & 0 & 0 & 0 \\ \frac{-\mu_{zx}}{E_z} & \frac{-\mu_{zy}}{E_z} & \frac{1}{E_z} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_{xy}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{xz}} \end{vmatrix}$$

$$\{\sigma\} = [D] \{\epsilon\} - [D] \{\alpha_T\} \Delta T$$
$$\frac{\partial q}{\partial t} = T_0 [D] \{\alpha_T\} \frac{\partial \epsilon}{\partial t} + \rho c \frac{\partial (\Delta T)}{\partial t} - [k] \nabla^2 T$$

Examples of CFD in Wood Science

CFD analysis of drying kiln: Rez 5 2 3 5

Fluid-Solid Interaction in thermal analysis

CFD analysis of influence of terrain, canopy, trees

Flotran CFD analysis

CFX fluid analysis

FLOTRAN CFD: drying kiln modeling

Zejda, J., Tippner, J. MENDELU, 2003..

sequentional FSI (Fluid-Solid interaction), laboratory kiln for validation influence of shape of pile

CFX modeling of high-capacity drying kilns

Zejda, J., MENDELU, 2009.

Temperature distributions, CFD based geometry optimization (deflection boards, piles), development of drying schedules.

CFX: infl. of stickers on temperature distribution

Modeling of Cell Wall - SPRUCE

able to detect significance of geometry (morphology) parameters between scales
able to predict "what-if" material changes caused by wood modification

"Superelement" Approach to Wood Modeling

Anisotropic HOMOGENIZED model of Wood Structure

Konas, P., MENDELU, 2005

- transformation into isotropic scale (less complicate physical laws and parameters used), still appropriate model for simulation of difficult physical problems

FEA of OSB – deterministic model

Sebera, V. MENDELU, 2016 – Deterministic modeling of composite, "projection" of material properties into global bending modulus, inflence of orientation of particles.

Uniformity of MW field

Spencer, P. 1950 : 1st patent for meal warming using MW (USA)

1) rotation/shift or 2) mode stirrers (reflective plates, movable reflective beads, fan-like stirrers)

Nasswetrová A. et al. The analysis and optimization of HF electromagnetic field homogeneity by mechanical homogenizers.... Wood Research, 2013.

Analysis of mode stirrer: field uniformity in MW wood dryer

Sebera, V., et al. FEA of mode stirrer impact on electric field uniformity in MW..., Drying Technology 2012.

Probabilistic analysis of semi-destructive device

ITAM

What is sensitivity of developed in-situ device to material parameters?

1) building and validation of model, (FEM x measurements by DIC),

2) using of verified model for probabilistic analyses (PDS - hundreds of simulation with Monte Carlo generated inputs)

3) describe correlations between material properties and measured parameters

	E_L	E_R	E_T	G_{RT}	G_{LT}	G_{LT}	A_L	A_T	A_R
F_R	0.959	0.013	0.048	0.035	0.073	0.014	0.030	0.019	0.027
							-		
+	VI	4							1
	1	THE							
Η		A	X						
		1							
		2-1		H					

Innovation of Sap Flow Measurement Method

new formula (LHB) for sap flow calculation was derived from the steady-state 2D PDE (conduction and convection of heat in sapwood using the HFD configuration

Tree biomechanics – static test of tree

Tree biomechanics – static test of tree

Tree defect simulation (stem, root system)

Wind Load Analysis – Christmas Tree

Prague's Christmas tree – synergy of wood anatomy, tree biomechanics, wood mechanics and numerical simulation

Tree failure mode – torsion

Boundary conditions – "weather" CFD analysis of the square

Computing of wind distribution

Compression wood

Although anchorage was good enough, a combination of different mechanical properties of wood (CW) and character of loading caused the fall.

Examples of FEA in Wood Science & Technology

